3,722 research outputs found

    Cold neutrons trapped in external fields

    Full text link
    The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.Comment: 5 pages, 4 figures, final version. Additional material reference added in the published versio

    Quantum Monte Carlo study of inhomogeneous neutron matter

    Full text link
    We present an ab-initio study of neutron drops. We use Quantum Monte Carlo techniques to calculate the energy up to 54 neutrons in different external potentials, and we compare the results with Skyrme forces. We also calculate the rms radii and radial densities, and we find that a re-adjustment of the gradient term in Skyrme is needed in order to reproduce the properties of these systems given by the ab-initio calculation. By using the ab-initio results for neutron drops for close- and open-shell configurations, we suggest how to improve Skyrme forces when dealing with systems with large isospin-asymmetries like neutron-rich nuclei.Comment: 8 pages, 6 figures, talk given at Horizons on Innovative Theories, Experiments, and Supercomputing in Nuclear Physics 2012, (HITES2012), New Orleans, Louisiana, June 4-7, 2012; to appear in Journal of Physics: Conference Series (JPCS

    Nuclear Reactions: A Challenge for Few- and Many-Body Theory

    Full text link
    A current interest in nuclear reactions, specifically with rare isotopes concentrates on their reaction with neutrons, in particular neutron capture. In order to facilitate reactions with neutrons one must use indirect methods using deuterons as beam or target of choice. For adding neutrons, the most common reaction is the (d,p) reaction, in which the deuteron breaks up and the neutron is captured by the nucleus. Those (d,p) reactions may be viewed as a three-body problem in a many-body context. This contribution reports on a feasibility study for describing phenomenological nucleon-nucleus optical potentials in momentum space in a separable form, so that they may be used for Faddeev calculations of (d,p) reactions.Comment: to appear in the Proceedings of HITES 2012: Conference on `Horizons of Innovative Theories, Experiments, and Supercomputing in Nuclear Physics', June 4-7, 2012, New Orleans, Louisian

    Jefferson’s Hidden Wonder

    Get PDF
    • …
    corecore